Math 55 Quiz 2 DIS 105

Name: \qquad 7 Feb 2022

1. Let m and n be integers. Suppose that m is an odd number. Prove that $m n$ is an even number if and only if n is an even number. [6 points]
There exists an integer k such that $m=2 k+1$.
Suppose n is even. Then there exists an integer l such that $n=2 l$. Then $m n=(2 k+1)(2 l)=$ $2(2 k l+l)$, where $2 k l+l$ is an integer, hence $m n$ is even.
Suppose n is odd. Then there exists an integer l such that $n=2 l+1$. Then $m n=$ $(2 k+1)(2 l+1)=2(2 k l+k+l)+1$, where $2 k l+k+l$ is an integer, hence $m n$ is odd. By contraposition, if $m n$ is even then n is even.
2. Prove or disprove that for all sets A, B,
(a) $A \cap(B-A)=\varnothing[2$ points]
(b) $\overline{A \cup B}=\bar{A} \cup \bar{B}$ [2 points]
(a) This is true. Assume there exists an element $x \in A \cap(B-A)$. Then $x \in A$ and $x \in B-A$. But $x \in B-A$ means that $x \in B$ and $x \notin A$, the latter contradicting $x \in A$. Hence there cannot be any elements in $A \cap(B-A)$; in other words, $A \cap(B-A)=\varnothing$.
(b) This is false. Suppose $U=\{1,2,3\}, A=\{1,2\}, B=\{2,3\}$. Then $\overline{A \cup B}=\varnothing \neq$ $\{1,3\}=\bar{A} \cup \bar{B}$.
